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Non-oscillatory relaxation methods for the shallow-water
equations in one and two space dimensions

Mohammed Sea��d∗;†

Fachbereich Mathematik; TU Darmstadt; 64289 Darmstadt; Germany

SUMMARY

In this paper, a new family of high-order relaxation methods is constructed. These methods combine
general higher-order reconstruction for spatial discretization and higher order implicit-explicit schemes
or TVD Runge–Kutta schemes for time integration of relaxing systems. The new methods retain all
the attractive features of classical relaxation schemes such as neither Riemann solvers nor characteristic
decomposition are needed. Numerical experiments with the shallow-water equations in both one and
two space dimensions on �at and non-�at topography demonstrate the high resolution and the ability of
our relaxation schemes to better resolve the solution in the presence of shocks and dry areas without
using either Riemann solvers or front tracking techniques. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: shallow-water equations; relaxation methods; higher order non-oscillatory schemes;
Runge–Kutta methods

1. INTRODUCTION

During the last decades there has been an enormous amount of activity related to the con-
struction of approximate solutions for the shallow-water equation written in conservative form
as

Ut + F(U)x=S(U) (1)

where

U=

(
h

hu

)
; F(U)=


 hu

hu2 +
g
2
h2


; S(U)=

(
0

−ghZx

)
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458 M. SEA�ID

where Z(x) is the function characterizing the bottom topography, h(t; x) is the height of the
water above the bottom, g is the acceleration due to gravity, u is the �ow velocity. The
two-dimensional shallow-water equations in conservative form read,

Ut + F(U)x +G(U)y=S(U) (2)

where

U=



h

hu

hv


; F(U)=




hu

hu2 + 1
2gh

2

huv




G(U) =




hv

huv

hv2 + 1
2gh

2


; S(U)=




0

−ghZx
−ghZy




Here, the variables h(t; x; y), g, Z(x; y) are the same as in the one-dimensional case, u and
v are �ow velocity in the x and y direction, respectively.
Equations (1) and (2) have been widely used to model water �ows, �ood waves, dam-break

problems, and have been studied in a number of books and papers in, among others [1–8].
Computing their numerical solutions is not trivial due to non-linearity, the presence of the
convective term and the coupling of the equations through S(U). Hence, in many problems (1)
and (2), the convective terms are distinctly more important than the source terms; particularly
when certain non-dimensional parameters reach high values (as example of these parameters
the Froude number), these convective terms are a source of computational di�culties and
oscillations. It is well known that the solutions of Equations (1) and (2) present steep fronts
and even shock discontinuities, which need to be resolved accurately in applications and often
cause severe numerical di�culties [2, 9].
Relaxation schemes have recently been extensively applied and studied, see for example

References [10–15]. The original relaxation model in Reference [10] was �rstly proposed for
the homogeneous hyperbolic system,

Ut + F(U)x= 0 (3)

where U(t; x)∈RN is a N -vector of conserved quantities, F(U)∈RN is non-linear �ux function
such that the Jacobian @F(U)=@U is diagonalizable with real eigenvalues. In Reference [10],
the conservation law is replaced by the system (known as relaxation system),

Ut +Vx = 0

Vt +A2Ux = −1
�
(V − F(U))

(4)

where V∈RN , A2 ∈RN×N is a diagonal matrix with positive diagonal elements A2k , k=1; : : : ;
N , and � is the relaxation time. We use A2 to denote the matrix A in Reference [10] to avoid
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NON-OSCILLATORY RELAXATION METHODS FOR THE SHALLOW-WATER EQUATIONS 459

square roots in formulas below. In the above and in what follows bold face type denotes
vector quantities.
The relaxation system (4) has a typical semilinear structure with the two linear characteristic

variables

V+AU and V −AU (5)

The main feature in considering this model lies essentially on the semilinear structure of the
relaxation system, which can be solved numerically without using Riemann solvers. Moreover
it can be shown analytically, see for example [16–18], that solution to (4) approaches solution
to the original problem (3) as �−→ 0 if the subcharacteristic condition

�21
A21
+
�22
A22
+ · · ·+ �2N

A2N
61 (6)

is satis�ed in (4), where �1; : : : ; �N are the eigenvalues of @F(U)=@U.
The relaxation schemes have been designed typically in Reference [10], such that a �rst-

order upwind scheme and second-order MUSCL scheme used for the space discretization
and a second-order implicit–explicit TVD Runge–Kutta scheme for the time integration. In
fact, relaxation schemes are a combination of non-oscillatory upwind space discretization
and a TVD implicit–explicit time integration of the resulting semi-discrete system, see for
instance References [10, 14, 16]. The fully discrete system of Equation (4) is referred to as a
relaxing system while that of the limiting system as the relaxation rate tends to zero, �→ 0, is
called relaxed scheme. For systems of conservation laws, these schemes o�er a very attractive
alternative for standard integration schemes, consult [10, 19] for numerical illustrations. The
application of relaxation scheme for the solution of hyperbolic conservation laws with source
terms was also discussed in References [12, 13, 20, 21]. In all these works, only �rst- and
second-order schemes have been discussed.
Despite the performance and competitive features of relaxations methods, there is not, to

our knowledge, any attempt to solve the two-dimensional shallow-water equations using re-
laxation methods. However, there is a work that is related to this problem. Authors in Refer-
ence [22] have applied the �rst- and second-order relaxation schemes to the one-dimensional
shallow-water equations. High-order accurate methods are important in scienti�c computing
because they o�er a mean to obtain accurate solutions with less work that may be required for
methods of lower accuracy. In this paper, following the same ideas, we �rst extend the relax-
ation schemes of Reference [10] to higher-order by combining a third-order central weighted
essentially non-oscillatory (CWENO) reconstruction and a third-order TVD implicit–explicit
Runge–Kutta scheme. Then, we use the resulting scheme to compute the solutions of some
test problems on shallow-water �ows. The obtained results demonstrate good shock resolu-
tion with high accuracy in smooth regions and without any non-physical oscillations near
the shock areas. From a practical point of view, the performance of our relaxation scheme
is very attractive since the computed solutions remain, stable, monotone and highly accurate
even on coarse meshes without solving Riemann problems or requiring special front tracking
techniques.
The organization of the paper is as follows: Section 2 is devoted to the construction of

third-order semi-discrete relaxation schemes for both one- and two-dimensional problems. In
Section 3, we introduce a third-order implicit–explicit TVD Runge–Kutta scheme for time
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integration. Section 4 illustrates the performance and accuracy of the schemes through exper-
iments with several benchmark tests on shallow-water problems in both one and two space-
dimensional cases. In the last section some conclusions are listed.

2. HIGHER ORDER RELAXATION SCHEME

2.1. The one-dimensional shallow-water equations

The relaxation system we propose for Equation (1) is

Ut +Vx = S(U)

Vt +A2Ux = −1
�
(V − F(U))

(7)

At the limit (�−→ 0) Equation (7) are reduced to the original system (1) by the local equi-
librium V=F(U). The two linear characteristic variables of (7) are

V+AU and V −AU (8)

To discretize the system of equations (7) we assume, for simplicity, an equally spaced grid
with grid space size �x= xi+1=2 − xi−1=2 and we consider a cell in the spatial domain which
we denote Ii=[xi−1=2; xi+1=2] containing the gridpoint xi. We use

Ui+1=2 =U(xi+1=2; t) and Ui=
1
�x

∫ xi+1=2

xi−1=2

U(x; t) d x

to denote the point-value and the approximate cell-average of the function U at (xi+1=2; t), and
(xi; t), respectively. We also use the following di�erence notation:

DxUi=
Ui+1=2 −Ui−1=2

�x
(9)

Then, a semi-discrete approximation for the system of equations (7) can be written as

dUi
dt

+DxVi = S(U)i

dVi
dt
+A2DxUi = −1

�
(Vi − F(U)i)

(10)

The kth component of the approximate solution is reconstructed by a piecewise polynomial
over the grid points as

Uk(x; t)=
∑
i
Pi(x;U)�i(x); �i= IIi (11)
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NON-OSCILLATORY RELAXATION METHODS FOR THE SHALLOW-WATER EQUATIONS 461

where Pi’s are polynomials de�ned in Ii. The values of Uk at the cell boundary point between
cells Ii and Ii+1, xi+1=2, are denoted as

U+
k (xi+1=2;U)=Pi+1(xi+1=2;U) and U−

k (xi+1=2;U)=Pi(xi+1=2;U)

Now and henceforth, the subscript k will be dropped. The degree of the polynomial Pi is
determined by the required order of accuracy of the method. In this paper, we consider the
third-order CWENO reconstruction in Reference [23] which is also the compact central scheme
reconstruction [24]. Thus,

Pi(x;U)=!LPL(x) +!RPR(x) +!CPC(x)

where

!l=
�l∑
m �m

; l; m∈ {L; R; C}; �l=
cl

(�+ ISl)p
; cL= cR=

1
4
; cC =

1
2

(12)

Note that the normalizing factor
∑

m �m is used here to guarantee
∑

l !l=1. The smoothness
indicators ISl and the polynomials Pl(x) are given by

ISL=(Ui −Ui−1)2; ISR=(Ui+1 −Ui)2; ISC =13=3(Ui+1 − 2Ui +Ui−1)2 + 1=4(Ui+1 −Ui−1)2

PL(x)=Ui +
Ui −Ui−1
� x

(x − xi); PR(x)=Ui +
Ui+1 −Ui
�x

(x − xi)

PC(x) =Ui − 1=12(Ui+1 − 2Ui +Ui−1) + Ui+1 −Ui−1
2(�x)

(x − xi)

+
(Ui+1 − 2Ui +Ui−1)

(�x)2
(x − xi)2

The constant � in (12) guarantees that the denominator does not vanish and is empirically
taken to be 10−6. Likewise the value of p is chosen to provide the highest accuracy in
smooth areas and ensures the non-oscillatory nature of the solution near the discontinuities
and is selected to be p=2.
With this background we can now reconstruct the characteristic variables (8) as

follows:

(V + AkU )i+1=2 = (V + AkU )−i+1=2 =Pi(xi+1=2;V+AU)

(V − AkU )i+1=2 = (V − AkU )+i+1=2 =Pi+1(xi+1=2;V −AU)
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462 M. SEA�ID

Hence

Ui+1=2 =
1
2Ak

(Pi(xi+1=2;V+AU)− Pi+1(xi+1=2;V −AU))

Vi+1=2 = 1
2(Pi(xi+1=2;V+AV) +Pi+1(xi+1=2;V −AU))

For completeness we write down the explicit expressions of the �ux variables below

Vi+1=2 = 1
2(Pi(xi+1=2;V+AU) +Pi+1(xi+1=2;V −Au))

= 1
2

{
!+L
[
(V + Aku)i + 1

2((V + AkU )i − (V + AkU )i−1)
]

+!+R
[
(V + AkU )i + 1

2((V + AkU )i+1 − (V + AkU )i)
]

+!+C
[
(V + AkU )i − 1

12 ((V + AkU )i+1 − 2(V + AkU )i + (V + AkU )i−1)

+ 1
4((V + AkU )i+1 − (V + AkU )i−1)

+ 1
4((V + Aku)i+1 − 2(V + Aku)i + (V + AkU )i−1)

]
+!−

L

[
(V − AkU )i+1 + 1

2((V − AkU )i+1 − (V − AkU )i)
]

+!−
R

[
(V − AkU )i+1 + 1

2((V − AkU )i+2 − (V − AkU )i+1)
]

+!−
C

[
(V − AkU )i+1 − 1

12 ((V − AkU )i+2 − 2(V − AkU )i+1 + (V − AkU )i)

+ 1
4((V − AkU )i+2 − (V − AkU )i)

= 1
4((V − AkU )i+2 − 2(V − AkU )i+1 + (V − AkU )i)

]}

where

!±
l =

�±
l∑
m �

±
m
; l; m∈ {L; R; C}; �±

l =
cl

(�+ IS±
l )p

; cL= cR=
1
4
; cC =

1
2

(13)

IS±
L =((V ± AkU )i − (V ± AkU )i−1)2; IS±

R =((V ± AkU )i+1 − (V ± AkU )i)2

IS±
C =

13
3 ((V ± AkU )i+1 − 2(V ± AkU )i + (V ± AkU )i−1)2

+ 1
4((V ± AkU )i+1 − (V ± AkU )i−1)2
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The expression for Ui+1=2 can be derived analogously. Therefore, we obtain the following
expressions for Ui+1=2 and analogously for Vi+1=2:

Ui+1=2 =
Ui +Ui+1

2
− Vi+1 − Vi

2Ak
+
�+i + �−

i+1

4Ak

Vi+1=2 =
Vi + Vi+1
2

− Ak Ui+1 −Ui
2

+
�+i − �−

i+1

4

where

�±
i =!

±
L ((V ± AkU )i − (V ± AkU )i−1) +!±

R ((V ± AkU )i+1 − (V ± AkU )i)

+
!±
C

2
((V ± AkU )i+1 − (V ± AkU )i−1)

+
!±
C

3
((V ± AkU )i+1 − 2(V ± AkU )i + (V ± AkU )i−1)

In (10) we approximate the �ux F(U)i and the source S(U)i using the fourth-order Simpson
quadrature rule,

F(U)i= 1
6(F(Ui+1=2) + 4F(Ui) + F(Ui−1=2)) (14)

and similarly for S(U)i with the reconstruction given above is used

Ui+1=2 =U−
i+1=2; Ui=Pi(xi;U); Ui−1=2 =U+

i−1=2

Thus, for the third-order reconstruction we obtain the following approximations:

Ui+1=2 =!LPL(xi+1=2) +!RPR(xi+1=2) +!CPC(xi+1=2)

Ui =!LPL(xi) + wRPR(xi) +!CPC(xi) (15)

Ui−1=2 =!LPL(xi−1=2) +!RPR(xi−1=2) +!CPC(xi−1=2)

with the corresponding weights, !L, !R, !C of the polynomials de�ned accordingly.

2.2. The two-dimensional shallow-water equations

The two-dimensional relaxation system associated with Equation (2) reads,

Ut +Vx +Wy = S(U)

Vt +A2Ux =−1
�
(V − F(U)) (16)

Wt + B2Uy =−1
�
(W −G(U))
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Consequently, in the limit system (16) approaches the original system (2) by the local equi-
librium V=F(U) and W=G(U). System (16) has linear characteristic variables given by

V ±AU and W ± BU (17)

For the space discretization of Equation (16), we cover the spatial domain with rectangular
cells Ci; j=[xi−1=2; xi+1=2]× [yj−1=2; yj+1=2] of uniform sizes �x and �y. The cells, Ci; j, are
centred at (xi= i�x; yj= j�y). We use the notations Ui±1=2; j(t)=U(xi±1=2; yj; t), Ui; j±1=2(t)=
U(xi, yj±1=2, t) and

Ui; j(t)=
1
�x

1
�y

∫ xi+1=2

xi−1=2

∫ yi+1=2

yj−1=2

U(x; y; t) d x dy

to denote the point-values and the approximate cell-average of U at (xi±1=2, yj, t), (xi, yj±1=2, t),
and (xi; yj; t), respectively. Then, the semi-discrete approximation of (16) is,

dUi; j
dt

+DxVi; j +DyWi; j = S(U)i; j

dVi; j
dt

+A2DxUi; j =−1
�
(Vi; j − F(U)i; j) (18)

dWi; j

dt
+ B2DyUi; j =−1

�
(Wi; j −G(U)i; j)

where Dx and Dy are di�erence operators de�ned by

DxUi; j=
Ui+1=2; j −Ui−1=2; j

�x
; DyUi; j=

Ui; j+1=2 −Ui; j−1=2
�y

The approximate solution is reconstructed by a piecewise polynomial over the grid points as

U (x; y; t)=
∑
i; j

Pi; j(x; y;U)�i; j(x; y); �i; j= ICi; j (19)

where Pi; j’s are polynomials de�ned in Ci; j and reconstructed dimension by dimension as

Pi; j(x; y;U)=Pi(x;U) +Pj(y;U)

In the following, we formulate the x- direction polynomial Pi(x;U), the formulation of
Pj(y;U) can be done analogously. Hence

Pi(x;U)=!LPL(x) +!RPR(x) +!CPC(x)

where the weights !l, l∈ {L; R; C} are the same as in (12) with

ISL=(Ui; j −Ui−1; j)2; ISR=(Ui+1; j −Ui; j)2
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ISC = 13
3 (Ui+1; j − 2Ui; j +Ui−1; j)2 + 1

4(Ui+1; j −Ui−1; j)2

PL(x)=
Ui; j
2
+
Ui; j −Ui−1; j

�x
(x − xi); PR(x)=

Ui; j
2
+
Ui+1; j −Ui; j

�x
(x − xi)

PC(x) =
Ui; j
2

− 1
24 (Ui+1; j − 2Ui; j +Ui−1; j)− 1

24 (Ui; j+1 − 2Ui; j +Ui; j−1)

+
Ui+1; j −Ui−1; j

2(�x)
(x − xi) + (Ui+1; j − 2Ui; j +Ui−1; j)

(�x)2
(x − xi)2

We can now discretize the characteristic variables (17) as follows:

(V + AkU )i+1=2; j =Pi(xi+1=2;V+AU); (V − AkU )i+1=2; j=Pi+1(xi+1=2;V −AU)
(W + BkU )i; j+1=2 =Pj(yj+1=2;W+ BU); (W − BkU )i; j+1=2 =Pj+1(yj+1=2;W − BU)

(20)

Recall that U , V , W , Ak and Bk are the kth (k=1; : : : ; N ) components of U, V, W, A and
B, respectively. Solving (20) for the unknowns Ui+1=2; j, Vi+1=2; j, Ui; j+1=2, and Wi; j+1=2 gives,

Ui+1=2; j =
1
2Ak

(Pi(xi+1=2;V+AU)− Pi+1(xi+1=2;V −AU))

vi+1=2; j = 1
2

(
Pi(xi+1=2;V+AU) +Pi+1(xi+1=2;V −AU))

Ui; j+1=2 =
1
2Bk

(Pj(yj+1=2;W+ BU)− Pj+1(xj+1=2;W − BU))

Wi; j+1=2 = 1
2(Pj(xj+1=2;W+ BU) +Pj+1(xj+1=2;W − BU))

Therefore, we obtain the following expressions for the numerical �uxes in (18):

Ui+1=2; j =
Ui; j +Ui+1; j

2
− Vi+1; j − Vi; j

2Ak
+
�x;+i; j + �

x;−
i+1; j

4Ak

Vi+1=2; j =
Vi; j + Vi+1; j

2
− Ak Ui+1; j −Ui; j

2
+
�x;+i; j − �x;−i+1; j

4

Ui; j+1=2 =
Ui; j +Ui; j+1

2
− Wi; j+1 −Wi; j

2Bk
+
�y;+i; j + �

y;−
i; j+1

4Bk

Wi; j+1=2 =
Wi; j +Wi+1; j

2
− Bk Ui; j+1 −Ui; j

2
+
�y;+i; j − �y;−i; j+1

4
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where �x;±i; j and �y;±i; j are the slopes of V ± AU and W ± BU on the cell Ci; j, respectively.
They are de�ned by

�x;±i; j =!±
L ((V ± AkU )i; j − (V ± AkU )i−1; j) +!±

R ((V ± AkU )i+1; j − (V ± AkU )i; j)

+
!±
C

2
((V ± AkU )i+1; j − (V ± AkU )i−1; j)

+
!±
C

3
((V ± AkU )i+1; j − 2(V ± AkU )i; j + (V ± AkU )i−1; j)

− !
±
C

6
((V ± AkU )i; j+1 − 2(V ± AkU )i; j + (V ± AkU )i; j−1)

�y;±i; j =!±
L ((W ± BkU )i; j − (W ± BkU )i; j−1) +!±

R ((W ± BkU )i; j+1 − (W ± BkU )i; j)

+
!±
C

2
((W ± BkU )i; j+1 − (W ± BkU )i; j−1)

+
!±
C

3
((W ± BkU )i; j+1 − 2(W ± BkU )i; j + (W ± BkU )i; j−1)

− !
±
C

6
((W ± BkU )i+1; j − 2(W ± BkU )i; j + (W ± BkU )i−1; j)

The weight parameters !±
L , !

±
R and !

±
C for �

x;±
i; j are given by (13) with,

IS±
L =((V ± AkU )i; j − (V ± AkU )i−1; j)2; IS±

R =((V ± AkU )i+1; j − (V ± AkU )i; j)2

IS±
C =

13
3 ((V ± AkU )i+1; j − 2(V ± AkU )i; j + (V ± AkU )i−1; j)2

+ 1
4((V ± AkU )i+1; j − (V ± AkU )i−1; j)2

The corresponding weight parameters for �y;±i; j are obtained by changing V ±AkU to W ±BkU
in the above formulas and di�erentiating respect to the y- direction. We close by pointing out
that in this higher-order scheme we approximate F(U)i; j, G(U)i; j and S(U)i; j in (18) using
the fourth-order Simpson quadrature rule dimension by dimension as in (14).

Remark
Another way to construct relaxation system that gives at the limit Equation (2) is to incorporate
the source term into the �ux function and use straightforwardly the scheme as in [10], i.e.

Ut +Vx +Wy = 0

Vt + Ã2Ux =−1
�
(V − F(U)) + 1

2�

∫ x

S(U) dx (21)

Wt + B̃2Uy =−1
�
(W −G(U)) + 1

2�

∫ y

S(U) dy
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The above semi-discretization remains valid for (21) with the only di�erence that the relax-
ation system (21) approaches, in the limit, the original system (2) by the local equilibrium,

V= F̃(U)=F(U)− 1
2

∫ x

S(U) d x; and W= G̃(U)=G(U)− 1
2

∫ y

S(U) dy (22)

We would like to point out that construction (21) has been experimented in Reference [22] for
the �rst- and second-order schemes. In our computational test problems, the results obtained by
the construction (21) are not presented because they overlap those obtained by the construction
(16). This would not be the case if same characteristic speed A= Ã and B= B̃ are used in
both constructions, compare the results in Reference [22].

2.3. TVD Runge–Kutta methods

The semi-discrete formulations (10) or (18) can be rewritten in common ordinary di�erential
equations notation as

dY
dt
=F(Y)− 1

�
G(Y) (23)

where the time-dependent vector functions

Y=

(
Ui

Vi

)
; F(Y)=

(
S(U)i − DxVi

−A2DxUi

)
; G(Y)=

(
0

Vi − F(U)i

)

for the one-dimensional case (10) or

Y=



Ui; j

Vi; j

Wi; j


; F(Y)=



S(U)i; j − DxVi; j − DyWi; j

−A2DxUi; j

−B2DyUi; j




G(Y)=




0

Vi; j − F(U)i; j
Wi; j −G(U)i; j




for the two-dimensional formulation (18). Due to the presence of sti� term in (23), one
cannot use fully explicit schemes to integrate Equation (23), particularly when �−→ 0. On
the other hand, integrating Equation (23) by fully implicit scheme, either linear or non-linear
algebraic equations have to be solved at every time step of the computational process. To �nd
solutions of such systems is computationally very demanding. In this paper we consider an
alternative approach based on implicit–explicit (IMEX) Runge–Kutta splitting. The non-sti�
stage of the splitting for F is straightforwardly treated by an explicit Runge–Kutta scheme,
while the sti� stage for G is approximated by a diagonally implicit Runge–Kutta scheme.
Compare References [25, 26] for more details.
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Let �t be the time step and Yn denotes the approximate solution at t= n�t. We formulate
the IMEX scheme for system (23) as,

Kl =Yn +�t
l−1∑
m=1
ãlmF(Km)− �t

�

s∑
m=1
almG(Km); l=1; 2; : : : ; s

Yn+1 =Yn +�t
s∑
l=1
b̃lF(Kl)− �t

�

s∑
l=1
blG(Kl)

(24)

The s× s matrices Ã=(ãlm), ãlm=0 for m¿l and A=(alm) are chosen such that the resulting
scheme is explicit in F, and implicit in G. The s-vectors b̃ and b are the canonical coe�cients
which characterize the IMEX s-stage Runge–Kutta scheme [26]. They can be given by the
standard double tableau in Butcher notation as

0 0 0 0 0 0
c̃2 ã21 0 0 0 0
c̃3 ã31 ã32 0 0 0
...

...
...

...
...

...
c̃s ãs1 ãs2 · · · ãss−1 0

b̃1 b̃2 · · · b̃s−1 b̃s

0 0 0 0 0 0
c2 a21 a22 0 0 0
c3 a31 a32 a33 0 0
...

...
...

...
...

...
cs as1 as2 · · · ass−1 ass

b1 b2 · · · bs−1 bs

Here, c̃ and c are s-vectors used in the non-autonomous cases. The left and right tables
represent the explicit and the implicit Runge–Kutta methods, respectively. The implementation
of the IMEX algorithm to solve (23) can be carried out in the following steps:

1. For l=1; : : : ; s,

(a) Evaluate K∗
l as: K∗

l =Yn +�t
l−2∑
m=1
ãlmF(Km) +�tãll−1F(Kl−1)

(b) Solve for Kl : Kl=K∗
l − �t

�

l−1∑
m=1
almG(Km)− �t

�
allG(Kl)

2. Update Yn+1 as: Yn+1 =Yn +�t
s∑
l=1
b̃lF(Kl)− �t

�

s∑
l=1
blG(Kl)

Notice that, using the above relaxation scheme neither linear algebraic equation nor non-linear
source terms can arise. In addition, the high-order relaxation scheme is stable independently
of �, so that the choice of �t is based only on the usual CFL condition

CFL= max
16k6N

(
�t
�x
; Ak

�t
�x

)
61 (25)

for the one-dimensional problems or

CFL= max
16k6N

(
�t
�
; Ak

�t
�x
; Bk

�t
�y

)
61 (26)

for the two-dimensional problems. In (26), � denotes the maximum cell size, �= max(�x,
�y).

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:457–484



NON-OSCILLATORY RELAXATION METHODS FOR THE SHALLOW-WATER EQUATIONS 469

In our numerical computations we use the third-order IMEX scheme proposed in Refer-
ence [25], the associated double Butcher tables can be represented as

0 0 0 0
� � 0 0

1− � �− 1 2− 2� 0

0 1
2

1
2

0 0 0 0
� 0 � 0

1− � 0 2− 2� �

0 1
2

1
2

(27)

where �=(3 +
√
3)=6. Other IMEX schemes of third and higher-order are also discussed in

Reference [26]. However, most of them used more intermediate stages than the IMEX method
(27). In practice, less stages in IMEX methods require less computational cost and also avoid
order reduction in the overall method. The sensibility of relaxation schemes on the selection
of IMEX methods has been addressed in Reference [27]. The authors in Reference [27] have
performed several numerical tests on one-dimensional hyperbolic systems with relaxation.
Obviously, at the limit (�−→ 0) the time integration procedure tends to a time integration
scheme of the limit equations based on the explicit scheme given by the left table in (27).

Remarks

(i) Note that the �rst- and second-order relaxation schemes studied earlier in Reference [10]
can be interpreted as (19) by taking

Pi; j(x; y;U)=Ui; j and Pi; j(x; y;U)=Ui; j +
U�i; j
�x

(x − xi) + U	i; j�y
(y − yj)

respectively. Here U�i; j=�x and U	i; j=�y are discrete slopes in the x and y directions
approximated in Reference [10] by MUSCL method along with a chosen slop limiter
function. The second-order time integration procedure in Reference [10] can be also
represented as (24) where the explicit and implicit Runge–Kutta tables are given by

0 0 0
1 1 0

1
2

1
2

−1 −1 0
2 1 1

1
2

1
2

(ii) In order to avoid initial and boundary layers in (16), initial and boundary conditions
are chosen to be consistent to the associated local equilibrium. For instance, if initial
data U=U0 and Dirichlet boundary condition U=Ub are given, then boundary and
initial conditions for (16) are given by

V(t;x) = F(Ub); W(t;x)=G(Ub)

V(0;x) = F(U0(x)); W(0;x)=G(U0(x))
(28)

If instead, the relaxation system (21) is used, then boundary and initial conditions for
V and W are chosen according to equilibrium (22). In general, any choice that leads
at the limit to the associated boundary and initial equilibrium can be also used.
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(iii) In practice, the characteristic speeds Ak and Bk in (16) can be chosen based on rough
estimates of eigenvalues of @F(U)=@U and @G(U)=@U, respectively. Another choice is
to calculate A and B locally at every cell as

Ai+1=2; j = max
U∈{U−

i+1=2; j ; U
+
i+1=2; j}

∣∣∣∣ @F@Uk (U )
∣∣∣∣

Bi; j+1=2 = max
U∈{U−

i; j+1=2 ; U
+
i; j+1=2}

∣∣∣∣ @G@Uk (U )
∣∣∣∣

(29)

where

U+
i+1=2; j =Pi+1(xi+1=2;U); U−

i+1=2; j=Pi(xi+1=2;U)

U+
i; j+1=2 =Pj+1(yj+1=2;U); U−

i; j+1=2 =Pj(yj+1=2;U)

A global choice is simply to take the maximum over the grid points in (29).

Ak =Bk = max
i; j
(Ai+1=2; j ; Bi; j+1=2); k=1; : : : ; N

It is worth saying that, larger Ak and Bk values usually add more numerical dissipation.

3. NUMERICAL EXPERIMENTS

In this section, we perform numerical tests with our third-order relaxation scheme on the
one- and two-dimensional shallow-water equations. In all our computations the CFL number
is �xed and time steps �t are calculated according to condition (25) or (26) that depend on
either one- or two-dimensional problem. Furthermore, the relaxation rate � is set to 10−6 in
all the test examples presented in this section.

3.1. One-dimensional examples

The one-dimensional relaxation system of shallow-water equations is given by (7) with
A2 = diag{A21 ; A22}. In all the test cases presented here we choose

A1 =A2 = max(sup|u+
√
gh|; sup|u−

√
gh|) (30)

Note that u ±√gh are the two eigenvalues of the one-dimensional shallow-water equations.
The following test cases are selected:

3.1.1. Dam-break problem. First we consider the dam-break problem in a rectangular channel
with �at bottom, Z(x)=0. The channel is of length 2000 m, the space discretization �x=
10 m and the initial conditions are given by

h(0; x)=

{
hl if x61000 m;

hr if x¿1000 m;
u(0; x)=0 m=s
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Figure 1. Water height and velocity plots for dam-break on wet bed, hr=hl = 0:5, at t=50 s.
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Figure 2. Water height and velocity plots for dam-break on wet bed, hr=hl = 0:005, at t=50 s.

where hl¿hr in order to be consistent with the physical phenomenon of a dam-break from the
left to the right. At t=0 the dam collapses and the �ow problem consists of a shock wave
traveling downstream and a rarefaction wave traveling upstream. We start by assuming that in
both sides of the dam there are water with corresponding heights hl = 10m and hr = 5m (depth
ratio hr=hl = 0:5), for the second test hl = 10m and hr = 0:05m (depth ratio hr=hl = 0:005). Note
that the �ow structure in the channel is subcritical for depth ratio greater than 0:5, and is
supercritical when depth ratio becomes smaller than 0:5. In Figures 1 and 2 we plot water
height and velocity �eld at t=50 s using CFL=0:5 for both tests. The relaxation scheme
captured correctly the discontinuity and the shock without need for very �ne mesh, compare
Reference [4].
Next, we consider a dry bed in the downstream of the dam, hl = 10 m and hr = 0 m (depth

ratio hr=hl =∞). This example is more di�cult than the previous one because of the singularity
that occurs at the transition point of the advancing front. The water height and the velocity
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Figure 3. Water height and velocity plots for dam-break on dry bed, hr=hl =∞, at t=40 s.

�ow at t=40 s are shown in Figure 3 using CFL=0:5. These results are in very close
agreement with the exact solution and with small conservation error in velocity variable due
to the fact that the third-order polynomial reconstruction (11) reduces to �rst-order accuracy
in area where the velocity peak is localized. No oscillations or negative values have been
observed in the solution. The analytical reference solutions for these test problems are due to
Reference [1].
To compare the accuracy of our relaxation scheme to the �rst- and second-order schemes

originally introduced in Reference [10], we have reproduced the results for the dam-break
on wet bed (depth ratio hr=hl = 0:5) using �rst-, second- and third-order relaxation schemes.
In Table I we display the relative errors at t=25 s measured in term of L1- norm by the
di�erence between the pointvalues of the exact solution and the reconstructed pointvalues
of the computed solution. We compare errors in both variables height h, and velocity u. In
Table I, M stands for the number of gridpoints used in the computation. These results show
that the relaxation schemes achieve their designed order of accuracy for this test problem.
The high accuracy of our scheme over the relaxation schemes from Reference [10] is clearly
demonstrated in both, height and velocity variables. Notice that the number of gridpoints for
the second-order relaxation scheme to have the same error as the third-order scheme is almost
two times that of the third-order scheme. The decay rate is slow for the velocity variable.

3.1.2. Flow over a hump. To investigate the ability of our algorithm to preserve the correct
steady-state solutions, we apply the relaxation scheme to a series of benchmark test problems
for lake at rest, subcritical, and transcritical �ows. They are widely used to test numerical
algorithms for the shallow-water equations. In all these test examples the channel length is
25 m and the bottom topography Z is de�ned as,

Z(x)=

{
0:2− 0:05(x − 10)2 if 86x612

0 otherwise
(31)
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Table I. Error-norms for dam-break on wet bed, hr=hl = 0:5, with CFL=0:5.

Errors in h Errors in v

M Scheme L1-error Rate L1-error Rate

1st order 7.905E-1 — 9.982E-1 —
200 2nd order 3.311E-1 — 6.036E-1 —

3rd order 1.035E-1 — 3.713E-1 —

1st order 6.288E-1 0.33 8.872E-1 0.17
400 2nd order 1.392E-1 1.25 2.997E-1 1.01

3rd order 2.641E-2 1.97 1.259E-1 1.56

1st order 3.871E-1 0.70 6.317E-1 0.49
800 2nd order 4.405E-2 1.66 1.398E-1 1.10

3rd order 4.418E-3 2.58 2.539E-2 2.31

1st order 2.031E-1 0.93 3.432E-1 0.88
1600 2nd order 1.041E-2 2.08 3.825E-2 1.87

3rd order 4.774E-4 3.21 3.218E-3 2.98

1st order 9.812E-2 1.05 1.801E-1 0.93
3200 2nd order 1.987E-3 2.39 9.629E-3 1.99

3rd order 3.598E-5 3.73 3.832E-4 3.07

The initial conditions are given by

h(0; x) + Z(x)=H m; u(0; x)=0 m=s (32)

Numerical results are shown for the �ow at rest, the subcritical �ow, the transcritical �ow
without shock, and the transcritical �ow with shock. All these results are displayed at t=200s
using 200 gridpoints and a CFL number �xed to 0:5. The analytical solutions are also plotted
(by solid lines) within the obtained numerical results.
Flow at rest: This test problem consists of Equations (1) and (31) augmented with initial

condition (32), where H =2 m. Figure 4 presents the computed water level and discharge,
hu. As can be seen in this �gure, the relaxation scheme preserves the correct steady �ow,
to almost machine accuracy. On the hump region, the scheme produces small errors in the
velocity component due to the spatial reconstruction (11).
Subcritical �ow: We solve Equations (1) and (31)–(32) subject to an upstream boundary

condition on the discharge hu=4:42m2=s and a downstream condition on the height H =2m.
The results are shown in Figure 5 for the water level and discharge. Once again, the relaxation
scheme resolves accurately this test problem with small errors in the discharge plot over the
hump area.
Transcritical �ow without shock: In this test case, we solve the Equations (1) and (31)–

(32) using an upstream boundary condition for the discharge hu=1:53m2=s and a downstream
boundary condition for the water level H =0:66m only if the �ow is subcritical. If the �ow
is supercritical, no condition is imposed. Figure 6 shows the water level and the discharge
plots. As mentioned by many authors, the correct capturing of the discharge is more di�cult
than the water height in these test problems.
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Figure 4. Water height and discharge plots for �ow at rest.
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Figure 5. Water height and discharge plots for subcritical �ow.

Transcritical �ow with shock: This test problem is similar to the previous one but with
di�erent boundary conditions. Here, a discharge of hu=0:18m2=s is imposed as the upstream
boundary condition and a water level of H =0:33m as the downstream boundary condition.
The obtained results for this test are displayed in Figure 7. In comparison with the results
reported in Reference [22] for the �ow over a hump, the present relaxation scheme provides
a good accuracy, such as the solution of �ow discharge.

3.1.3. Drain on a non-�at bottom. This is a challenging numerical test example as it involves
the calculation of dry areas in the computational domain. As proposed in Reference [6], the
length of the channel is 25m and the bed pro�le Z is mathematically de�ned by (31). The
initial conditions are,

h(0; x) + Z(x)=0:5m; u(0; x)=0m=s
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Figure 6. Water height and discharge plots for transcritical �ow without shock.
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Figure 7. Water height and discharge plots for transcritical �ow with shock.

Re�ective conditions are used on the upstream boundary and the downstream boundary con-
dition is that of a dry bed. The steady state solution of this problem is a �ow at rest, in the
left part of the hump h+Z =0:2m, u=0m=s and dry �ow, h=0m, u=0m=s in the right of
the hump.
We discretize the space domain into 250 uniform gridpoints and CFL=0:5. In Figure 8, we

present the evolution of water depth and the discharge plots at several times t=10; 20; 100,
and 1000 s. The relaxation scheme performs very well for this case and gives results which
converge to the expected steady-state solution. These results compare well with those published
in Reference [6].
Notice that no modi�cations have been added to the method to overcome the dry areas in the

computational domain. However, since for such area one or both eigenvalues of the Jacobian
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Figure 8. Water height and discharge plots for drain on non-�at bottom at di�erent times.

can pass through zero, the characteristic speeds A1 and A2 in (30) are not valid any more. To
overcome the zero speeds in the relaxation system (7), we perturb these characteristic speeds
by 10−2 far from zero. The monotonicity of the scheme is preserved and no non-physical
oscillations or extra numerical di�usion have been detected during the computations.

3.2. Two-dimensional examples

The two-dimensional relaxation system of shallow-water equations is constructed as (16) with
A2 = diag{A21 ; A22; A23} and B2 = diag{B21; B22; B23}. The selection of these parameters is made
based on the eigenvalues {u; u±√gh} and {v; v±√gh} of the Jacobian matrices @F(U)=@U
and @G(U)=@U, as

A1 = A2 =A3 = max(sup|u|; sup|u−
√
gh|; sup|u+

√
gh|)

B1 = B2 =B3 = max(sup|v|; sup|v−
√
gh|; sup|v+

√
gh|)

A threshold of 10−2 is added to these characteristic speeds wherever they vanish. This per-
turbation is needed to treat dry cells in the computational domain. We perform the following
test cases:

3.2.1. Circular dam-break problem. This example was �rst proposed in Reference [3]. The
space domain is a 50 m long square with a cylindrical dam with radius 11 m and centred
in the square. The initial water height is 10 m inside the dam and 1 m outside the dam and
water is initially at rest. At t=0, the cylindrical wall forming the dam collapses and time
evolution of water level is computed. As in Reference [3], we discretize the domain uniformly
in 50× 50 gridpoints and the solution is displayed at t=0:69 s. The contour plot of water
height is shown in Figure 9. In this �gure we have also included the surface plot for a better
insight. As can be seen a bore has formed and the water drains from the deepest region as
a rarefaction wave progresses outwards. The �ow in that region becomes supercritical. The
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Figure 9. Contour and surface plots of water height for the circular dam-break problem on wet bed.
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Figure 10. Contour and surface plots of water height for the circular dam-break problem on dry bed.

results show that the circular symmetry is preserved very well by our relaxation scheme. The
results agree with Reference [3].
We now turn our attention to the presence of dry areas in the computational domain. In

order to illustrate the performance of the relaxation scheme we set the downstream water depth
to 0 m and we solve the problem using the same mesh as for the previous test. Figure 10
shows the results at t=0:69 s. We see that no bore forms, instead a rarefaction wave extends
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Figure 11. Contour plots for water height (left) and x-velocity (right) in the shock focusing problem.

into the dry bed. Clearly, the relaxation scheme is capable of resolving sharply dry areas and
discontinuities.
Our next concern is to ascertain the behaviour of the relaxation scheme on a shock focusing

problem. To this end we consider square domain [−1:5; 1:5]× [−1:5; 1:5] containing a circular
wall of radius 0:35 and centred in the square. Initially the model is at rest with water height
of 0:1 inside the wall and 1 outside. Here units have been chosen so that the gravitational
constant g is unity. By removing the wall we observe a circular shock wave moves inwards,
passes through the singularity and then the shock wave expands outwards, the computational
domain is divided into 100× 100 square cells and the numerical solution is computed at time
t=1. Figure 11 illustrates the contour plots of water depth h and x-velocity u. The numerical
solution preserves rotational symmetry in a perfect way and the problem is solved correctly
by our relaxation scheme.

3.2.2. Squared dam-break problem. We consider a 200m long and 200m wide �at reservoir
with two di�erent constant levels of water separated by a dam. At t=0 part of the dam
breaks instantaneously. The dam is 10 m thick and the breach is assumed to be 75 m wide,
as shown in Figure 12. Initially,

h(0; x; y)=

{
10 m if x¡100 m

5 m otherwise
u(0; x; y)= v(0; x; y)=0 m=s

In the left column of Figure 13 we plot the water surface elevation, while the right column
contains the corresponding velocity vectors. All computations are made on a uniform mesh
of 50× 50 gridpoints. Compared with the numerical results reported in Reference [5], the
relaxation scheme solves the problem accurately with less di�usion than the method used in
Reference [5]. Note that the performance of our relaxation scheme is very attractive since
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Figure 12. Geometry of the squared dam-break problem.

the computed solution remains, stable, monotone and highly accurate even on coarse grids
without solving Riemann problems or requiring special front tracking procedures.

3.2.3. Flow over a smooth bump. This test problem is proposed and analysed in [28, 29] to
check the property of preserving the initial steady state for numerical methods. It consists of
Equation (2) de�ned in unit square domain with a symmetric bump localized at the centre of
the domain and de�ned by

Z(x; y)= max

[
0; 0:25− 5

((
x − 1

2

)2
+
(
y − 1

2

)2)]

The domain is closed with wall boundaries. Two situations are considered: (i) initial water
level cover totally the bump and, (ii) initial water cover partially the bump. In both situations,
the spatial domain is discretized in 50 cells in each direction, the CFL number is set to 0:5
and the solutions are computed for t=1 min.
In the �rst test case, the initial conditions are

h+ Z =0:5 m; u=0 m2=s; v=0 m2=s

Figure 14 represents the numerical results obtained by the relaxation scheme for the water
depth. For the second test case, the initial conditions are,

h+ Z =0:1 m; u=0 m2=s; v=0 m2=s

The computed results for this test case are shown in Figure 15. In both test cases, the relaxation
scheme maintains correctly the steady �ow structure without any kind of spurious oscillations
over the hump.
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Figure 13. Water surface elevation and velocity �eld for squared dam-break problem.
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Figure 14. Contour and surface plots of water depth for �ow over a totally covered bump.
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Figure 15. Contour and surface plots of water depth for �ow over a partially covered bump.

3.2.4. Flow over a shaped bump. Our purpose in the following test problem is to examine
the ability of our relaxation scheme to handle the two-dimensional shallow-water equations
on non-�at bottom. In this academic test, we consider the Equation (2) in the rectangular
channel [0; 2]× [0; 1] with an elliptical-shaped hump de�ned by [8],

Z(x; y)=0:8 exp(−5(x − 0:9)2 − 50(y − 0:5)2) (33)
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Figure 16. Contours of water surface for �ow over a shaped hump using 200× 100 gridpoints (left
column) and 400× 200 gridpoints (right column) at times 0:6, 0:9, 1:2, 1:5 and 1:8.
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Note that hump (33) is centred at (0:9; 0:5) with a minimum and maximum heights of 0:01
and 0:8, respectively. Initially, the �ow is at rest and the water surface is �at with a small
perturbation in the vertical slab [0:05; 0:15] as

h(0; x; y)=

{
1:01− Z(x; y) if 0:05¡x¡0:15

1− Z(x; y) otherwise

Out�ow boundary conditions are imposed on all domain boundaries, and we use two meshes
of 200× 100 and 400× 200 gridpoints for comparison. In our computation we set the dimen-
sionless g=1. In Figure 16, we display contour plots of the water distribution as it �ows past
the hump. Note that the speed of water �ow is slower above the hump than elsewhere in the
channel, producing a distortion of the initially �at distribution of the water. We can see that
the small complex structures of the water �ow being captured by our relaxation scheme.

4. CONCLUSIONS

Relaxation schemes of �rst- and second-order accuracy were introduced in Reference [10]. In
this paper we have reconstructed high-order relaxation schemes by using WENO ideas and
a class of TVD high-order Runge–Kutta time integration methods. We have further general-
ized and extended the relaxation schemes for the two-dimensional shallow-water equations.
This procedure combines the attractive attributes of the two methods to yield a procedure
for either �at or non-�at topography. The new method retains all the attractive features of
central schemes such as neither Riemann solvers nor characteristic decomposition are needed.
Furthermore, the scheme does not require either non-linear solution or special front tracking
techniques.
The third-order relaxation method have been tested on systems of shallow-water equations

in one and two space dimensions. The obtained results indicate good shock resolution with
high accuracy in smooth regions and without any non-physical oscillations near the shock
areas. The convergence to the correct steady-state solution has been clearly veri�ed in �ow at
rest and drain on non-�at bottom. Although we have restricted our numerical computations to
the frictionless shallow-water problems, the current relaxation scheme can be straightforwardly
extended to more general shallow-water �ows with bottom friction and Coriolis forces.
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